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An Explicit Derivation of the Relationships Between

the Parameters of an Interdigital Structure and

the Equivalent Transmission-Line

HENRY J. RIBLET, FELLOW, IEEE

Abstract-The general nth-order admittance matrix for an array of

paratlel conductors placed between ground planes is exhihited, subject to

the assumption that direct coupling exists only between adjacent conduc-

tors and that only a TEM wave is present whenever all the conductors hut

one are grounded.

When the alternate terminals of one of these arrays are connected to

ground, as in an interdigital bandpass filter, the admittance matrix yields

a subsystem of equations which, except for sign, is identical in form with

the node equations of suitably seleeted transmission-line cascade. The

identification of the coefficients in these similar systems of equations

explicitly determines the coefficients of the admittance matrix in terms

of the parameters of the prototype transmission-line cascade. In turn, the

capacities to ground and the muturd capacities, each per unit length, for

tbe array of parallel conductors can be determined from the coefficients

of its admittance matrix by imposing the pertinent voltage conditions on

the admittance equations. Thus, one arrives, explicitly, at the general for-

mulas used in the design of interdigital filters which relate the capacities

per unit length of the parallel conductors to the parameters of the proto-

type transmission-line cascade.

It is shown that, if the first element of the interdigital structure is open-

circuited, the transmission-line cascade begins with a series, open-cir-

cuited quarter-wave stub while, if the first element of the interdigital

structnre is short-circuited, the first element of the cascade is a shunt,

short-circnited quarter-wave stub. Extensions of the method to equiva-

lences with other prototype networks are suggested.

In the Appendix, closed expressions for the self and mutual admitt-

ances of the parallel conductor array are given in terms of the self im-

pedances and coupling coefficients of the nth-order impedance matrix

proposed by Bolljabn and Mattbaei for this structure, subject to the

assumption of no coupling between nonadjacent conductors. These are
shown to be consistent with the requirement that the admittance matrix be

the reciprocal of the impedance matrix.

INTRODUCTION

D

ESIGN EQUATIONS for interdigital bandpass

filters which assume an exact equivalence between

these structures and a transmission-line cascade

comprised of alternate equal-length line sections and shunt

or series stubs of the same length have been given by

Matthaei [1]. He justified this equivalence by applying a
“folding operation” to the dual of the parallel-coupled

filter analyzed by Cohn [2]. Recently, Wenzel [3] has in-

ferred that this equivalence is a rigorous consequence of the

impedance matrix, assumed by Bolljahn and Matthaei [4] in
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their discussion of the general properties of parallel con-

ductors between ground planes for the case when there is no

coupling between nonadjacent conductors. This inference

was based on the important discoveryl by Wenzel that the

second-order impedance matrix of the interdigital filter is

equivalent to the second-order impedance matrix of a suit-

able transmission-line cascade, for the special cases of

symmetric networks with up to eight lines and for asym-

metric networks with up to four lines.

This paper proceeds from the admittance equations for

the array of parallel conductors rather than from the im-

pedance equations. This seemingly minor change in the

point of view, however, results in major simplification of the

analysis. In fact, the required form of the admittance equa-

tions can be deduced from two electrical assumptions re-

garding the array of parallel conductors between ground

planes which, in turn, are consequences of the geometry of

the array. When the voltage conditions associated with an

interdigital filter are imposed on the admittance equations of

the parallel conductors a subsystem of equations results

which can be identified term by term with the node equations

of an equivalent, prototype transmission-line cascade. This

correspondence is essentially the same as that obtained by

Mattaei using a “folding operation.” The procedure of this

paper has the important advantage, however, in that it pro-

vides an explicit derivation of the relationships between the

parameters of the equivalent transmission-line cascade and

the capacities per unit length of the parallel conductor array.

In the Appendix, it is shown, in general, that the imped-

ance matrix of Bolljahn and Mattaei, subject to the condi-

tion of no coupling between nonadjacent conductors, is the

reciprocal of the admittance matrix used in this paper and

closed expressions for the coefficients in the admittance equa-

tions in terms of the coefficients of the impedance equations

are presented.

THE ADMITTANCE EQUATIONS

The analysis of interdigital structures, to be given in this

paper, depends on the particular form of the general admit-

tance equations of the array of parallel conductors between

ground planes. With the terminal voltages and currents

defined as in Fig. 1, these may be written,

1The author wishes to acknowledge his indebtedness to this result
since it was the starting point for this paper which, he believes, is a
rigorous justification of Matthaei’s “folding operation.”
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I.b
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Yll – Y,,t YH! – Y1’J o . .

– Y,,t Yll – Yd Ylz o . “

Y12 – Yd Y22 – Yd Y23 – Y2J o . .

– Y,,t Yl, – Y,,t Y22 – Y23t Yzst O - “

00 Y23 – Y23t Y33 – Yd Y34 – Yd o . .
I

1“ –Y’nt Y.Z3 – Y33t Y33 – Y34t Y34 o . .

Y . – Y.ntnn

– Y.nt . Yn.

where p= —j cos @l/sin B1 and t= sec fil. Moreover, Y,, is

a positive real number while Y, ,,+1 is a negative real number.

How these equations may be obtained by inverting the

impedance matrix which Bolljahn and Matthaei employed in

their discussion of interdigital structures is demonstrated in

the Appendix. A simpler and possibly more useful procedure

is to infer the form of the admittance equations (1) directly

from the geometry of the parallel conductors of Fig. 1.

It will be useful to state these conditions on parallel con-

ductors with terminals on the forward or “a” side as seen

in Fig. 1 but of infinite extent on the far side. Both condi-

tions will be imposed on the electromagnetic fields which

result when the ith input terminal ia is subjected to a non-

zero input voItage V,. while all other input voltages are

zero. Then,

A) The electromagnetic field extending beyond the i– 1st

and i+ 1st conductors is negligible.

B) The electromagnetic field associated with the ith con-

ductor is entirely a TEM wave propagating in the axial

direction of the conductors whose propagation con-

stant is independent of i.

As an immediate consequence of B), the field components

of any waves excited on the parallel conductors of Fig. 1,

when all of the inputs are shorted except for those of the ith

conductor, will be transverse to the axis of the conductors.

Also, the electric and magnetic vectors are solutions of

Laplace’s equation and may be derived from a complex

potential function. In short, we are dealing with a coaxial

transmission-line in which the ith conductor is the inner

conductor and the outer conductor comprises the ground

planes and the other conductors, all at ground potential. If

we now define Y,, as the ratio of the current in the ith con-

ductor to the voltage to ground and Y,, as the ratio of the

current in the jth conductor to the voltage between the ith

conductor and ground, we have the following conclusions:

a) As the characteristic admittance of a coaxial line, Y,i

is a positive real number.

b) As the measure of a portion of the current in the

outer conductor of a coaxial line, Y,j is a negative

real number.

c) / Y;j] < Yti.

Moreover, because of condition A), Y~i= O if j> i+ 1.

If the infinite system of parallel conductors is terminated

Vla

Vlb

-vZa

T72FI

-v3a

v3b

v..

V.b

1967

(1)

—

Vza
V,o

Vla

Fig. 1. Schematic array of parallel conductors between ground planes.

now at “b,” equidistant on each conductor by a length 1

from the input at “a,” standing waves will, in general, be

established on each of the i transmission lines defined by the

termination conditions assumed above. On each of these

lines, the currents at the “i” terminals are determined from

the voltages at the “i” terminals by means of the equations,

I~b = p y~~via — pt Yiiv.b

Iib = – ptyiz~i. + p Yiivtb.

Even though the voltages at the other terminals are zero,

Vti and V,b establish nonzero currents at the adjacent ter-

minals. These currents, as we have seen, however, differ

only from 1,. and I,b in sign and absolute value. To obtain

them, we replace Y,, by Y, ,,+1 or Y,–l,i, above. We can now

reconstruct the columns of (1) from conditions A) and B).

The reciprocity theorem relates terms in different columns

of (1) and assures its symmetry about its principal diagonal.

How well condition A) is satisfied by a given array of

parallel conductors will depend on the relative spacing of

all of its components. In a general way, the coupling between

nonadjacent conductors will decrease as the spacing between

the conductors and the ground planes decreases and the

spacing between the conductors increases. Then, in this case,

condition B) places a limit only on the spacing between adja-

cent conducting elements.

An essential point in the design procedure for interdigital

filters is the fact that the proportionality factors are identical

which relate Y,, and Y,i to the corresponding self and mutual

capacities of the two-dimensional several conductors prob-

lem with the same cross section. Consider Y,; and Y$,i+l.

Condition B) assures us that the electric and magnetic

fields associated with the two-conductor problem, consist-

ing of ith conductor at one potential and the ground planes

and the other conductors at zero potential can be obtained
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from a complex potential, I#I+jt. Thus, the axial current in

any portion of ith conductor or i+ 1th conductor is given

by /K/e (#Z–&) where I#Vand +1 are the values of the stream

function @at the limits of that portion of the conductor being

considered. Now if the same complex potential function is

used to solve the static potential problem, the total change Q,

per unit length, on any portion of these conductors is given

by thee (~z–~l). Thus, we have, in general, that the current of

a TEM wave on any portion of the conductors is related to

the charge per unit length for the static potential problem,

over the same portion of the conductor, by the relationship,

I= Q/d~e. If we divide both 1 and Q by the potential dif-

ference between the conductors, we have c,, = ~~c 1,, and

C,j = VIC Y,j, where c,, and C,3are the self and mutual capac-

ities per unit length in the corresponding several conductor

potential problem.2

THE NODE EQUATIONS OF THE TRANSMISSION-LINE CASCADE

When we impose the terminal conditions of the inter-

digital structure in Fig. 2 on the admittance equations (1) of

the array of parallel conductors of Fig. 1, we obtain a series

of equations which can be compared term by term with

the equations for the node currents in the transmission-line

cascade of Fig. 3. In the derivation of these node equations,

we will require the admittance equations for the series

inductor, ideal transformer, transmission-line element, and

shunt capacitor of Fig. 3. For the series inductor,

l,. = ~ V,. – 1 V~*~
Lp Lp

lo~~ = – J Vin + ~~ VIJ,j~.
Lp

(2)

Here positive voltages are upward, positive currents flow

toward the network and the input terminal is assumed to be

at the left. For the ideal transformer,

Vin = N V..,

Iin = – ~ IOU,. (3)

lb

I

21

10

Fig. 2.

1,--

Schematic interdigital structure showing terminal numbering.

Fig. 3. Equivalent transmission-line cascade.

For the transmission-line element,

li~ = 17PVin – YtpVO.t

1o., = – YtPVin + Y’pVout, (4)

where Y is the characteristic admittance of the transmission-

line element. Finally, for a shunt capacitor, the current 1

flowing downward due to a voltage V impressed across its

terminals is given by,

I = cpv. (5)

We are now in a position to apply the Kirchhoff current

law to the nodes of the circuit of Fig. 3. These are represented

by hollow circles in the figure and are numbered from left

to right. These nodes occur in pairs, and we shall only con-

sider the upper nodes of each pair since the currents in the

lower nodes differ only in sign from the currents in the upper

nodes. A series of voltages running upward between related

node pairs is shown in Fig. 3. We agree that currents flowing

out of the upper node of each pair is assumed positive and

notice that, except for the first and last nodes, the net cur-

rent into each node is zero. In view of (2), (3), (4), and (5),

we have,

( )O=–:vl+ ;+ C2P+ 172P v? – Y2tpv3

o= – Y2tpv2 + (Y2 + C3 + Y3)pv3 – Y3tpv4

o= – Y1_ltpv;_l + ( Yi–1 + Ci + Yt)pvi – YLtpvi_l

I; = – Yn_ltpvn_l + ( F.–1 + Cn)pv,,. (6)

z For the definition of the terms involved in and a discussion of the
several conductor problem, the reader is referred to S. Ramo and
J. R. Whinnery, Fields and Waves itz Modem Radio. New York: Wiley,
pp. 262-265, 1953.
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It should be observed that this system of equations is similar

in form to the node equations which Guillemin [5] has

employed in his discussion of equivalent ladder networks in

that all nonzero terms fall on the three diagonals centered

about the principal diagonal. This is to be expected since

there is no direct coupling between nonadjacent nodes for

either form of network cascade. On the other hand, (6) is

readily distinguishable from the node equations of a ladder

network of lumped constant elements in the occurrence of

the nonrealizable frequency variable tp in some of the off-

diagonal terms.

THE PROBLEM

The principal result of this paper is the explicit proof that

the interdigital structure of Fig. 2 and the transmission-line

cascade of Fig. 3 have the same overall performance as seen

from the input and output terminals. Matthaei has analyzed

this problem in two steps. First, he has constructed a parallel-

ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1967

rigorous equivalence which determines the relationships be-

tween the parameters of an array of parallel conductors be-

tween ground planes and those of a transmission-line

cascade, in general.

THE SOLUTION

Let us consider the interdigital filter of Fig. 2, in which the

first element is open-circuited while the last element is short-

circuited. Then the terminal voltage conditions are,

~2b=v3a =v4b=”””=~nb= O,

while the terminal current conditions are,

llb = 12. = lsb = 14a = . 0 0 = I(n_~)b = O.

When these conditions are imposed on the general admit-

tance equations (1) the following subsystem of equations

results:

Ila = Yllpvla – Yllpwlb + Y12Pv2a

O = – Y@JtV1. + yll~vlb – y12@v2a

o= y@9vIG – y12@vlb + Y22PV2. – y!23@v3b

o= – y23@v2a + y33~v3b – y34@v4a

o= – Yn–a,n–@V(n-z)a + yn_&@v(n-~)b – yA,@Vna

Ix. =

coupled filter which must have the same overall performance

as the transmission-line cascade because it is a cascade of

elements each of which has the same overall performance as

the elements making up the transmission-line cascade;

secondly, he has introduced a “folding operation” to show

that the interdigital structure and the parallel-coupled filter

must have approximately the same overall characteristics.

Wenzel has based the characteristics of the interdigital struc-

ture on the impedance matrix of the array of parallel-

conductors array exactly and shown, in a limited number of

– y.–l,.@v(m-l)b + YnnpVna. (7)

Here, except in the upper left-hand corner, all terms are zero

except those that fall on the principal diagonal where they

have the form Y,ip, and on the two adjacent diagonals where

they have the form – Y,,i+lpt. This exception can be avoided

by eliminating the node at lb from the system. To do this

multiply the second equation by tand add to the first equa-

tion and then multiply the second equation by YIJ Yllt and

add to the third equation. Now, if use is made of the fact

p(l – t’)= I/p, a subsystem of (7) results in which ~~b does

not occur, having the form,

+ y12/pv2a

O = yIZ/Pvla + ( y122/ yIl~ + ( Y22 – yu2/ YH)P)VZ. – y23@v3b

o= – y23@v2a + y33~v3b – y34@v4a

o= – yn_2,n–l@v(n-2)a + yn–l,n–l~v(n–l)b – yn–I,n@vna

In. = – yn_l,@tv(n-l)b + YnnpVrm (8)

cases, that the two-port impedance matrices, determined by Except for certain minus signs occurring in the off-diagonal
Z,,, Z,’, and ZZ2, of the networks of Fig. 2 and Fig. 3 are the term of (6), this system has exactly the form of (6). Since
same. these minus signs may be introduced by phase-reversing ideal

This paper combines features of both points of view. Like transformers, we have shown a rigorous equivalence be-
Wenzel, the characteristics of the interdigital structure are tween the interdigital filter of Fig. 2 and the transmission
determined by the immittance equations of the array of

parallel conductors, but like Matthaei, the final equivalence
3In selwting P’ti = O, an even number of conductors has been as-

is established on an element by element basis rather than sumed. Selecting an odd number of conductors alters the form but not
on the overall performance of the networks. The result is a the conclusions of the following arguments.
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line of cascade of Fig. 3, except for phase. This equivalence

permits the following identification of parameters, proceed-

ing from left to right in the figures,

Y,, = l/L

Y,, = – N/L

Y,t = C, + Y2 + N2/L

Y23 = – Y2

Y83=Y2+C3+Y3

Yn-l,n = – Y._~

Y – Yn_l + cn.n,?? — (9)

Here minus signs have been introduced in the equations for

each of the mutual admittances Y,, ,+1, except Ylz. These are

required since Y,,i are known to be negative real numbers.

These minus signs imply phase reversing ideal transformers

in Fig. 3, which have been omitted for the sake of conve-

nience. Now the self and mutual capacities per unit length

of the array of parallel conductors are obtained directly from

(9) by use of the proportionality factor VE, as we have seen.

The determination of the physical dimensions of a par-

ticular interdigital structure from known values of L, N, . . .,

C. depend on calculations made by Getsinger [6] for rec-

tangular conductors and by Cristal [7] for round rods. These

calculations, in the form of graphs, express the capacity to

ground of the individual conductors as well as their mutual

capacity, both per unit length, normalized to the permit-

tivity of the medium, in terms of the physical dimensions of

the structure. The capacity to ground, per unit length, of the

ith conductor will be denoted by C,Uwhile the negative of

the mutual capacity per unit length between the ith and Jh

conductor will be denoted by c, ,jm.4 Our immediate objec-

tive then is a set of equations similar to (9) expressing c,~

and C,,,+ln in terms of the parameters of the prototype

transmission-line cascade.

Corresponding to c,’, one can define a characteristic

admittance to ground of the ith conductor Y,i~ as the ratio

of the current flowing on the ith conductor to the voltage to

ground when all the input voltages are the same and the

conductors extend to infinity in the direction of the “b”

terminals. Then, in view of (1) and earlier remarks,

Y1l’ = Yll + Y12

Y22” = Y12 + Y22 + Y23

Y@ = Y23 + Y33 + Y34

Y.??’= Y.-l,. + Y..< (lo)

Since, by earlier arguments, C,Q= VX= Y, ,0, and C,jm— N/Z Y,j,

we may substitute (9) in (10), and (10) in (11), and obtain

the general design equations,

4 It should be noted that the capacity to ground of the ith conduc-
tor is defined with all of the conductors at the same potential while the
mutual capacities are defined with all but one of the conductors at
ground potential.

——
C23m/6 = ~p/6 Y2

—.

c3Q/t = alp/e C3

These then are the exact general design equations with which

one may design an interditial structure to have the same be-

havior, except for phase, as the transmission-line cascade of

Fig. 3. It will be found that the design equations of Matthaei

can be obtained from them by substituting on the left the

approximate values of L, N, C,, and Yi which he obtained

from a lumped constant lowpass prototype. Of course, if the

interdigital filter is terminated in short-circuits at both ends,

then Yll= Cl+ Yl, etc., and if both ends are open-circuited,

Ynn= l/Ln, etc.

COMMENTS

This analysis has been carried out on the assumption that

alternate terminals of the interdigital structure were short-

and open-circuited. If we assume that all of the “b” ter-

minals are short-circuited while all of the “a” terminals,

except those at the input and output, are open-circuited,

then (1) reduces to the node equations of a ladder network

consisting only of capacitors. On the other hand, if all of

the “b” terminals are open-circuited, while the internal “a”

terminals are open-circuited, (1) reduces to the node equa-

tions of a ladder network consisting only of inductors. Of

course, many networks in which the conductors are ter-

minated in more general admittances may be analyzed in the

same way.

The node equations of ladder networks containing only

capacitors or only inductors have the same form as (8) ex-

cept that all terms have a common frequency behavior.

Following Guillemin, one may multiply the same row and

column of these equations by a constant without altering

the overall behavior of the network and thereby obtain

equivalent networks. One may extend this equivalence opera-

tion to the node equations of transmission-line cascades

thereby constructing a whole class of equivalent networks.

In fact, transmission-line cascades consisting only of shunt

capacitors separated by transmission-line elements are in a

one-to-one correspondence to ladder networks consisting

only of capacitors, with the property that the correspondence

of networks is unaffected by equal row and column multi-

plication by a constant. It follows that the Kuroda identity

5 This isomorphism underlies Wenzel’s treatment of transmission-
line cascades as capacitance networks.
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[8] relating to shunt capacitors and transmission-line ele-

ments applies as well to pi sections consisting only of

capacitors. Of course, the same remarks are valid for the

dual situation involving series inductors.

APPENDIX

The impedance equations for the array of parallel con-

ductors of Fig. 1, subject to the requirement that there be no

coupling between nonadjacent conductors, may be written

in the general case as,

VI.

vlb

v2a

v2b

V.a

vnb

‘P

znKnl z.K.,t :

ZnKnlt ZnKml .

for suitable definition of the symbols involved. Now V,.,

V,b, Ilb, p and thave the same meanings as were used earlier.

Z, is the input impedance of the ith conductor when the

other input terminals are open circuited and all the con-

ductors are infinite in length. Also, K,jZ Ki . . . Kj_l~ZJ/ZT

and Kj, = K, . . . K~_l~Z,/ZJ for i<j+ 1 while K~,,+l

= KL~Z,/Z, and K;+l,, = K,dZ,/Z,. Here K,Z,+l/Z, is the

voltage coupling factor, as defined by Bolljahn and Matthaei,

which gives the ratio between the voltage at the i+” 1st

terminal and the ith terminal. It will be seen that KLk= K,j

.Kjk for i<j<k. Thus, Condition (4) of Wenzel is satisfied

and there is no direct coupling between nonadjacent con-

ductors. Moreover, ZjKib=ZLK%~ so that the impedance ma-

trix in (11) is symmetrical. For Z,= Zj, i#j, (11) reduces

immediately to (1) of Wenzel subject to the assumption con-

cerning coupling between nonadjacent conductors.

The admittance equations (1) will be a general representa-

tion of the array of parallel conductor between ground

planes of Fig. 1 which is consistent with the impedance

equation representation (11) if it can be shown that their

admittance and impedance matrices are reciprocals. This can

be done without great difficulty, if we assume that coefficients

of the admittance equations are given in term of the coeffi-

cients in the impedance equations as follows:

Y,, = (1 - K~2)–lZI–1

Yii = (1 – Ki_l’K,’) (1 – K,-l’)-’(l – K12)-’Z;-’,

i#lorn.

Y.* = (1 – Kn_12)–lZn–1 (12)

and

Y~,i+l = – KJ1 – Ki’)-l(Z;Zi+J-1/2.

The evaluation of the terms of the product of the admit-

tance matrix of (1) and the impedance matrix of (11) is

simplified by the fact that each of the terms in the product is

the sum of at most six nonzero components. This is ap-

parent from the form of (1). Now, the term in the 2i– 1st

row and 2i— 1st column of the product has the value,

(

Ki_12 1 – Ki_12K,2 K%2

P2
1 – Ki_12 –

+
(1 – K,-Iz) (1 – K,2) 1 – Kt2 )

(P-1)=1.

Z1K12t . . . ZIK1n ZIKlnt

ZIKIZ . . . ZIKJ ZIKI.

Z,t . . . Z,K,. Z2K2nt

z, . . . Z2K2J ZZKZn
. . . .
. . . .
. . . .
. . . z. Znt

. . . Z.t z.

11.

11~

12a

12b

I

(11)

The term in the 2i+ Ist row and 2i– Ist column contains the

factor,

–K,–12K, K,(l – KL12Ki’) K,

1 – K,_12 + (1 – K,_12) (1 – Ki2) – l–Ki2’

and vanishes because this factor vanishes. No other terms

in the 2i—’1 st column require evaluation since they can be

seen to be zero by inspection. The terms in the 2ith column

of the product may be evaluated in the same way with sim-

ilar results. The terms in the first two and last two rows and

columns of the product matrix involve only four components

and so require special consideration; but, now the evaluation

is simpler and the final result is the same. Thus, the only

nonzero elements in the product of the impedance and ad-

mittance matrices are the ones on the principal diagonal.
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