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An Explicit Derivation of the Relationships Between
the Parameters of an Interdigital Structure and
the Equivalent Transmission-Line Cascade

HENRY J. RIBLET, FELLOW, IEEE

Abstract—The general nth-order admittance matrix for an array of
parallel conductors placed between ground planes is exhibited, subject to
the assumption that direct coupling exists only between adjacent conduc-
tors and that only a TEM wave is present whenever all the conductors but
one are grounded.

When the alternate terminals of one of these arrays are connected to
ground, as in an interdigital bandpass filter, the admittance matrix yields
a subsystem of equations which, except for sign, is identical in form with
the node equations of suitably selected transmission-line cascade. The
identification of the coefficients in these similar systems of equations
explicitly determines the coefficients of the admittance matrix in terms
of the parameters of the prototype transmission-line cascade. In turn, the
capacities to ground and the mutual capacities, each per unit length, for
the array of parallel conductors can be determined from the coefficients
of its admittance matrix by imposing the pertinent voltage conditions on
the admittance equations. Thus, one arrives, explicitly, at the general for-
mulas used in the design of interdigital filters which relate the capacities
per unit length of the parallel conductors to the parameters of the proto-
type transmission-line cascade,

It is shown that, if the first element of the interdigital structure is open-
circuited, the transmission-line cascade begins with a series, open-cir-
cuited quarter-wave stub while, if the first element of the interdigital
structure is shert-circuited, the first element of the cascade is a shunt,
short-circuited quarter-wave stub. Extensions of the method to equiva-
lences with other prototype networks are suggested.

In the Appendix, closed expressions for the self and mutual admit-
tances of the parallel conductor array are given in terms of the self im-
pedances and coupling coefficients of the nth-order impedance matrix
proposed by Bolljahn and Matthaei for this structure, subject to the
assumption of no coupling between nonadjacent conductors. These are
shown to be consistent with the requirement that the admittance matrix be
the reciprocal of the impedance matrix.

INTRODUCTION

ESIGN EQUATIONS for interdigital bandpass
D filters which assume an exact equivalence between

these structures and a transmission-line cascade
comprised of alternate equal-length line sections and shunt
or series stubs of the same length have been given by
Matthaei [1]. He justified this equivalence by applying a
“folding operation” to the dual of the paraliel-coupled
filter analyzed by Cohn [2]. Recently, Wenzel [3] has in-
ferred that this equivalence is a rigorous consequence of the
impedance matrix, assumed by Bolljahn and Matthaei [4] in
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their discussion of the general properties of parallel con-
ductors between ground planes for the case when there is no
coupling between nonadjacent conductors. This inference
was based on the important discovery' by Wenzel that the
second-order impedance matrix of the interdigital filter is
equivalent to the second-order impedance matrix of a suit-
able transmission-line cascade, for the special cases of
symmetric networks with up to eight lines and for asym-
metric networks with up to four lines.

This paper proceeds from the admittance equations for
the array of parallel conductors rather than from the im-
pedance equations. This seemingly minor change in the
point of view, however, results in major simplification of the
analysis. In fact, the required form of the admittance equa-
tions can be deduced from two electrical assumptions re-
garding the array of parallel conductors between ground
planes which, in turn, are consequences of the geometry of
the array. When the voltage conditions associated with an
interdigital filter are imposed on the admittance equations of
the parallel conductors a subsystem of equations results
which can be identified term by term with the node equations
of an equivalent, prototype transmission-line cascade. This
correspondence is essentially the same as that obtained by
Mattaei using a “folding operation.” The procedure of this
paper has the important advantage, however, in that it pro-
vides an explicit derivation of the relationships between the
parameters of the equivalent transmission-line cascade and
the capacities per unit length of the parallel conductor array.

In the Appendix, it is shown, in general, that the imped-
ance matrix of Bolljahn and Mattaei, subject to the condi-
tion of no coupling between nonadjacent conductors, is the
reciprocal of the admittance matrix used in this paper and
closed expressions for the coefficients in the admittance equa-
tions in terms of the coefficients of the impedance equations
are presented.

THE ADMITTANCE EQUATIONS

The analysis of interdigital structures, to be given in this
paper, depends on the particular form of the general admit-
tance equations of the array of parallel conductors between
ground planes. With the terminal voltages and currents
defined as in Fig. 1, these may be written,

1 The author wishes to acknowledge his indebtedness to this result
since it was the starting point for this paper which, he believes, is a
rigorous justification of Matthaei’s “folding operation.”
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where p= —j cos 8l/sin 8l and r=sec Bl. Moreover, Y, is
a positive real number while Y, ., is a negative real number.

How these equations may be obtained by inverting the
impedance matrix which Bolljahn and Matthaei employed in
their discussion of interdigital structures is demonstrated in
the Appendix. A simpler and possibly more useful procedure
is to infer the form of the admittance equations (1) directly
from the geometry of the parallel conductors of Fig. 1.

It will be useful to state these conditions on parallel con-
ductors with terminals on the forward or “g” side as seen
in Fig. 1 but of infinite extent on the far side. Both condi-
tions will be imposed on the electromagnetic fields which
result when the ith input terminal 7a is subjected to a non-
zero input voltage V., while all other input voltages are
zero. Then,

A) The electromagnetic field extending beyond the i— Ist
and i-1st conductors is negligible.

B) The electromagnetic field associated with the ith con-
ductor is entirely a TEM wave propagating in the axial
direction of the conductors whose propagation con-
stant is independent of i.

As an immediate consequence of B), the field components
of any waves excited on the parallel conductors of Fig. 1,
when all of the inputs are shorted except for those of the ith
conductor, will be transverse to the axis of the conductors.
Also, the electric and magnetic vectors are solutions of
Laplace’s equation and may be derived from a complex
potential function. In short, we are dealing with a coaxial
transmission-line in which the ith conductor is the inner
conductor and the outer conductor comprises the ground
planes and the other conductors, all at ground potential. If
we now define Y, as the ratio of the current in the ith con-
ductor to the voltage to ground and Y,, as the ratio of the
current in the jth conductor to the voltage between the ith
conductor and ground, we have the following conclusions:

a) As the characteristic admittance of a coaxial line, Y,;
is a positive real number.,

b) As the measure of a portion of the current in the
outer conductor of a coaxial line, Y,; is a negative
real number.

C) 1 Y,]’ <Y..

Moreover, because of condition A), ¥;=0 if j>i+1.
If the infinite system of parallel conductors is terminated
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Fig. 1. Schematic array of parallel conductors between ground planes.
now at “b,” equidistant on cach conductor by a length /
from the input at “a,” standing waves will, in general, be
established on each of the i transmission lines defined by the
termination conditions assumed above. On each of these
lines, the currents at the “;” terminals are determined from
the voltages at the “/”” terminals by means of the equations,

Iy = pYiiVia — pt Y.V
Ig = —ptY Vi + pYiiVoe.

Even though the voltages at the other terminals are zero,
Vi, and V,;, establish nonzero currents at the adjacent ter-
minals. These currents, as we have seen, however, differ
only from 7I,, and I,; in sign and absolute value. To obtain
them, we replace Y,, by Y, .1 or Y, ;, above. We can now
reconstruct the columns of (1) from conditions A) and B).
The reciprocity theorem relates terms in different columns
of (1) and assures its symmetry about its principal diagonal.

How well condition A) is satisfied by a given array of
parallel conductors will depend on the relative spacing of
all of its components. In a general way, the coupling between
nonadjacent conductors will decrease as the spacing between
the conductors and the ground planes decreases and the
spacing between the conductors increases. Then, in this case,
condition B) places a limit only on the spacing between adja-
cent conducting elements.

An essential point in the design procedure for interdigital
filters is the fact that the proportionality factors are identical
which relate Y,, and Y ; to the corresponding self and mutual
capacities of the two-dimensional several conductors prob-
lem with the same cross section. Consider Y,; and ¥, 1.
Condition B) assures us that the electric and magnetic
fields associated with the two-conductor problem, consist-
ing of ith conductor at one potential and the ground planes
and the other conductors at zero potential can be obtained
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from a complex potential, ¢+ji. Thus, the axial current in
any portion of ith conductor or i+ Ith conductor is given
by v/iu/e(p2—¢1) where ¢, and ¢, are the values of the stream
function ¢ at the limits of that portion of the conductor being
considered. Now if the same complex potential function is
used to solve the static potential problem, the total change Q,
per unit length, on any portion of these conductors is given
by the e(Y2—y1). Thus, we have, in general, that the current of
a TEM wave on any portion of the conductors is related to
the charge per unit length for the static potential problem,
over the same portion of the conductor, by the relationship,
I=Q/~/ue. If we divide both I and Q by the potential dif-
ference between the conductors, we have ¢,,=+/ue¥,, and
c,;=+/ueY,;, where c,, and c,, are the self and mutual capac-
ities per unit length in the corresponding several conductor
potential problem.?

THE NoDE EQUATIONS OF THE TRANSMISSION-LINE CASCADE

When we impose the terminal conditions of the inter-
digital structure in Fig. 2 on the admittance equations (1) of
the array of parallel conductors of Fig. 1, we obtain a series
of equations which can be compared term by term with
the equations for the node currents in the transmission-line
cascade of Fig. 3. In the derivation of these node equations,
we will require the admittance equations for the series
inductor, ideal transformer, transmission-line element, and
shunt capacitor of Fig. 3. For the series inductor,

1 1
Iin = Vin - T Vout
Lp Lp
I ! Vin + ! V (2)
out — Lp in Lp oute

Here positive voltages are upward, positive currents flow
toward the network and the input terminal is assumed to be
at the left. For the ideal transformer,
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Fig. 3.

Equivalent transmission-line cascade.

For the transmission-line element,
Iin - YpVin b YtpVout
Iout = }rtpVin + Yquut, (4)

where Y is the characteristic admittance of the transmission-
line element. Finally, for a shunt capacitor, the current I
flowing downward due to a voltage ¥ impressed across its
terminals is given by,

I =CpV. (5)

We are now in a position to apply the Kirchhoff current
law to the nodes of the circuit of Fig. 3. These are represented
by hollow circles in the figure and are numbered from left
to right. These nodes occur in pairs, and we shall only con-
sider the upper nodes of each pair since the currents in the
lower nodes differ only in sign from the currents in the upper
nodes. A series of voltages running upward between related
node pairs is shown in Fig. 3. We agree that currents flowing

Vin =N Vous out of the upper node of each pair is assumed positive and
notice that, except for the first and last nodes, the net cur-
I = — i Tou. (3) rent into each node is zero. In view of (2), (3), (4), and (5),
N we have,
I ! 14 N Vv
1= Lp 1 Lp 2
N N?
0=—-——Vi+ <—‘- + Cup + sz> Vo — YotpVs
Lp Ly
0 = —_ thpVg + (Y2 + 03 + Yg)pV?, - YgtpV4
0= — YoitpVia+ (Y + Ci+ Y)pVi— YitpVin
In = —_ )’n_ltan_1 _l— (yyn—l + Cn)pvn' (6)

% For the definition of the terms involved in and a discussion of the
several conductor problem, the reader is referred to S. Ramo and
J. R. Whinnery, Fields and Waves in Modern Radio. New York: Wiley,
pp. 262-265, 1953,
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It should be observed that this system of equations is similar
in form to the node equations which Guillemin [5] has
employed in his discussion of equivalent ladder networks in
that all nonzero terms fall on the three diagonals centered
about the principal diagonal. This is to be expected since
there is no direct coupling between nonadjecent nodes for
either form of network cascade. On the other hand, (6) is
readily distinguishable from the node equations of a ladder
network of lumped constant elements in the occurrence of
the nonrealizable frequency variable fp in some of the off-
diagonal terms.

THE PROBLEM

The principal result of this paper is the explicit proof that
the interdigital structure of Fig. 2 and the transmission-line
cascade of Fig. 3 have the same overall performance as seen
from the input and output terminals. Matthaei has analyzed
this problem in two steps. First, he has constructed a parallel-
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rigorous equivalence which determines the relationships be-
tween the parameters of an array of paraliel conductors be-
tween ground planes and those of a transmission-line
cascade, in general.

THE SOLUTION

Let us consider the interdigital filter of Fig. 2, in which the
first element is open-circuited while the last element is short-
circuited. Then the terminal voltage conditions? are,

Vs =Vau=Vap=+++=Vp = O,
while the terminal current conditions are,
Ilb:IZa=I3b=I4a= "'=I(n—-l)b=0-

When these conditions are imposed on the general admit-
tance equations (1) the following subsystem of equations
results:

— YosptVos + YiaspViap — YVauptVy,

— Yn—2,n—1ptV(n—2)a '+' Yn—-l,n—lpV(n—l)b - Yn-—l,nptvna

I, = YiupVie — Y1uptVis + YiepVaa
0= — YuptVie+ YiupVi — Y12ptVa
0= YiopVie — YViaptVip + YospVas — YasptViss
0=
0 =
Lo, =

coupled filter which must have the same overall performance
as the transmission-line cascade because it is a cascade of
elements each of which has the same overall performance as
the elements making up the transmission-line cascade;
secondly, he has introduced a “folding operation™ to show
that the interdigital structure and the parallel-coupled filter
must have approximately the same overall characteristics.
Wenzel has based the characteristics of the interdigital struc-
ture on the impedance matrix of the array of parallel-
conductors array exactly and shown, in a limited number of

- Yn—l,nptV(n—l)b + Ynanna- (7)
Here, except in the upper left-hand corner, all terms are zero
except those that fall on the principal diagonal where they
have the form Y,p, and on the two adjacent diagonals where
they have the form — ¥, ., 1pt. This exception can be avoided
by eliminating the node at 15 from the system. To do this
multiply the second equation by # and add to the first equa-
tion and then multiply the second equation by Y1,/ Y1if and
add to the third equation. Now, if use is made of the fact
p(1—)=1/p, a subsystem of (7) results in which V3, does
not occur, having the form,

— YouptViea + YiapVa — YViaptVia

Ila = Y11/pV1a + le/pvza
= Yi/pVie+ (Yo/ Yip + (Vo — Y102/ Yi)p)Vae — YasptViy
0 =
0= - Yn—2,n—1ptV(n—2)u, + Yn—l,n—lpV(n—l)b - Yn—l.nptVna,
Ina =

cases, that the two-port impedance matrices, determined by
Z11, Z1s, and Zs,, of the networks of Fig. 2 and Fig. 3 are the
same.

This paper combines features of both points of view. Like
Wenzel, the characteristics of the interdigital structure are
determined by the immittance equations of the array of
parallel conductors, but like Matthaei, the final equivalence
is established on an element by element basis rather than
on the overall performance of the networks. The result is a

- Yn»—l,nptv(n—l)b + Ynnpvna-

®)

Except for certain minus signs occurring in the off-diagonal
term of (6), this system has exactly the form of (6). Since
these minus signs may be introduced by phase-reversing ideal
transformers, we have shown a rigorous equivalence be-
tween the interdigital filter of Fig. 2 and the transmission

* In selecting V=0, an even number of conductors has been as-
sumed. Selecting an odd number of conductors alters the form but not
the conclusions of the following arguments.
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line of cascade of Fig. 3, except for phase. This equivalence
permits the following identification of parameters, proceed-
ing from left to right in the figures,

Yu=1/L
Yi=—N/L
Yoo=0Co+ Yo+ N¥YL
Y23 = — Y2
?,33: Y2+C3+ Y3
Yoiin=— Yo,
Yon=Yua+C, 9)

Here minus signs have been introduced in the equations for
each of the mutual admittances Y,,,,1, except Yis. These are
required since Y, ; are known to be negative real numbers.
These minus signs imply phase reversing ideal transformers
in Fig. 3, which have been omitted for the sake of conve-
nience. Now the self and mutual capacities per unit length
of the array of parallel conductors are obtained directly from
(9) by use of the proportionality factor +/ue, as we have seen.

The determination of the physical dimensions of a par-
ticular interdigital structure from known valuesof L, N, - - -,
C, depend on calculations made by Getsinger {6] for rec-
tangular conductors and by Cristal [7] for round rods. These
calculations, in the form of graphs, express the capacity to
ground of the individual conductors as well as their mutual
capacity, both per unit length, normalized to the permit-
tivity of the medium, in terms of the physical dimensions of
the structure. The capacity to ground, per unit length, of the
ith conductor will be denoted by ¢, while the negative of
the mutual capacity per unit length between the ith and jth
conductor will be denoted by ¢, ,”.* Our immediate objec-
tive then is a set of equations similar to (9) expressing ¢,
and c,+1™ in terms of the parameters of the prototype
transmission-line cascade.

Corresponding to ¢, one can define a characteristic
admittance to ground of the ith conductor Y,# as the ratio
of the current flowing on the ith conductor to the voltage to
ground when all the input voltages are the same and the
conductors extend to infinity in the direction of the “b”
terminals. Then, in view of (1) and earlier remarks,

=Yu+4 Y
Yot = YVis+ Yoo + Yo
=Y+ Y3+ Y

"
"
<«

=
|

.Yvnng = Yn—l.n + Ynm (10)
Since, by earlier arguments, ¢,/ =+/ue Y, .7, and ¢, — /e Yy,
we may substitute (9) in (10), and (10) in (11), and obtain
the general design equations,

4 It should be noted that the capacity to ground of the ith conduc-
tor is defined with all of the conductors at the same potential while the
mutual capacities are defined with all but one of the conductors at
ground potential.
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¢1’/e = Vu/e(l — N)/L
Clgm/e = \/,U.—/EN/L
02/6 = '\/WEC2

cos™/e = ufeYs
?3”/6 = \/;76-03

cofe = /nfeCi
?uﬁ/e =Vu/eY;

" eat/e = /ufeCo

These then are the exact general design equations with which
one may design an interditial structure to have the same be-
havior, except for phase, as the transmission-line cascade of
Fig. 3. It will be found that the design equations of Matthaei
can be obtained from them by substituting on the left the
approximate values of L, N, C,, and Y, which he obtained
from a lumped constant lowpass prototype. Of course, if the
interdigital filter is terminated in short-circuits at both ends,
then Yy,=C,+ 74, etc., and if both ends are open-circuited,
Yu.=1/L,, etc.

COMMENTS

This analysis has been carried out on the assumption that
alternate terminals of the interdigital structure were short-
and open-circuited. If we assume that all of the “b” ter-
minals are short-circuited while all of the “q” terminals,
except those at the input and output, are open-circuited,
then (1) reduces to the node equations of a ladder network
consisting only of capacitors. On the other hand, if all of
the “b” terminals are open-circuited, while the internal “a”
terminals are open-circuited, (1) reduces to the node equa-
tions of a ladder network consisting only of inductors. Of
course, many networks in which the conductors are ter-
minated in more general admittances may be analyzed in the
same way.

The node equations of ladder networks containing only
capacitors or only inductors have the same form as (8) ex-
cept that all terms have a common frequency behavior.
Following Guillemin, one may multiply the same row and
column of these equations by a constant without altering
the overall behavior of the network and thereby obtain
equivalent networks. One may extend this equivalence opera-
tion to the node equations of transmission-line cascades
thereby constructing a whole class of equivalent networks.
In fact, transmission-line cascades consisting only of shunt
capacitors separated by transmission-line elements are in a
one-to-one correspondence’ to ladder networks consisting
only of capacitors, with the property that the correspondence
of networks is uneffected by equal row and column multi-

-plication by a constant. It follows that the Kuroda identity

& This isomorphism underlies Wenzel’s treatment of transmission-
line cascades as capacitance networks.
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[8] relating to shunt capacitors and transmission-line ele-
ments applies as well to pi sections consisting only of
capacitors. Of course, the same remarks are valid for the
dual situation involving series inductors.

APPENDIX

The impedance equations for the array of parallel con-
ductors of Fig. 1, subject to the requirement that there be no
coupling between nonadjacent conductors, may be written
in the general case as,

Via Zy Zit Z,K1e
Vi YAY Z Z1K st
V2 Z Ky Z:Koil Zy
V'zb =p Z2I.(215 Z2K21 Z.zt
Vna annl annlt

Vs ZKuid ZaKay

for suitable definition of the symbols involved. Now V,,
Vs, I1v, p and ¢ have the same meanings as were used earlier.
Z, is the input impedance of the ith conductor when the
other input terminals are open circuited and all the con-
ductors are infinite in length. Also, K,;=K; - - - K;_Z,/Z,
and K;=K, - -K;.WZ,/Z, for i<j+1 while K.
=K~NZ,/Z, and Kiy1,,=K~Z,/Z, Here K.Z..1/Z, is the
voltage coupling factor, as defined by Bolljahn and Matthaei,
which gives the ratio between the voltage at the i-1st
terminal and the ith terminal. It will be seen that K,;=K,;
- K, for i<j<k. Thus, Condition (4) of Wenzel is satisfied
and there is no direct coupling between nonadjacent con-
ductors. Moreover, Z;K;,=Z,K,; so that the impedance ma-
trix in (11) is symmetrical. For Z,=Z;, i}, (11) reduces
immediately to (1) of Wenzel subject to the assumption con-
cerning coupling between nonadjacent conductors.

The admittance equations (1) will be a general representa-
tion of the array of parallel conductor between ground
planes of Fig. 1 which is consistent with the impedance
equation representation (11) if it can be shown that their
admittance and impedance matrices are reciprocals. This can
be done without great difficulty, if we assume that coefficients
of the admittance equations are given in term of the cocffi-
cients in the impedance equations as follows:

Yu=00—=K®»'Z
YVi=(0—- K *KH1 — K. '(1 — K)Z7,
1#1 or n
Yo = (1 = Kp_i2)~"1Z,1 (12).
and

Yiipn = — Ki(l = K& HZZipr) 2
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The evaluation of the terms of the product of the admit-
tance matrix of (1) and the impedance matrix of (11) is
simplified by the fact that each of the terms in the product is
the sum of at most six nonzero components. This is ap-
parent from the form of (1). Now, the term in the 2i—1st
row and 2i—Ist column of the product has the value,

q( K; 2 1 — K *K,? n K.? )
PNAZK ey  U-K.)0—K» ' 1-Kz
(-1 =1.
Z Kot - - - Z1Ky  Z1Knt I,
ZKy, 7 Kyt Z1Ka Iy
Zzt . ZQKZn Z2K2nt I2a
Zs < ZoKot  Z3Ks, Iy (1)
7z, Z.t Tna
Znt Zn Inb

The term in the 2i+1st row and 2/ — 1st column contains the
factor,

—K, *K, L K;(1 — K; K% K;
1—K, ¢ (1-K_»1-—K3 1—Kg

and vanishes because this factor vanishes. No other terms
in the 2i—1st column require evaluation since they can be
seen to be zero by inspection. The terms in the 2ith column
of the product may be evaluated in the same way with sim-
ilar results. The terms in the first two and last two rows and
columns of the product matrix involve only four components
and so require special consideration ; but, now the evaluation
is simpler and the final result is the same. Thus, the only
nonzero elements in the product of the impedance and ad-
mittance matrices are the ones on the principal diagonal.
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